4,675 research outputs found

    Rates of solar angles for two-axis concentrators

    Get PDF
    The Sun's position by the azimuth and elevation angles and its rate of change at any time of day are determined to design 2 axis tracking mechanisms of solar concentrators. The Sun's angles and their rates for selected months of the year (March, June, September and December) and for seven selected atitudes (0, + or - 30, + or - 60, + or - 90) covering both the northern and southern hemispheres were studied. The development of the angle and angle rate analytical expressions for any month, hour of day, and latitude provides the solar concentrator designer with a quantitative determination of the limiting Sun's position and angle rates for an accurate automatic tracking mechanism

    Supersolid phases in the extended boson hubbard model

    Full text link
    We present a comprehensive numerical study on the ground state phase diagram of the two-dimensional hardcore boson extended Hubbard model with nearest (V1V_1) and next nearest neighbor (V2V_2) repulsions. In addition to the quantum solid and superfluid phases, we report the existence of striped supersolid and three-quarter (quarter) filled supersolid at commensurate density ρ=0.75\rho=0.75 (0.25) due to the interplay of V1V_1 and V2V_2 interactions. The nature of three-quarter filled supersolid and the associated quantum solid will be discussed. Quantum phase transition between the two supersolids of different symmetries is observed and is clearly of first order.Comment: 4 pages, 6 figure

    A note on the third family of N=2 supersymmetric KdV hierarchies

    Full text link
    We propose a hamiltonian formulation of the N=2N=2 supersymmetric KP type hierarchy recently studied by Krivonos and Sorin. We obtain a quadratic hamiltonian structure which allows for several reductions of the KP type hierarchy. In particular, the third family of N=2N=2 KdV hierarchies is recovered. We also give an easy construction of Wronskian solutions of the KP and KdV type equations

    Introduction to Graphene Electronics -- A New Era of Digital Transistors and Devices

    Full text link
    The speed of silicon-based transistors has reached an impasse in the recent decade, primarily due to scaling techniques and the short-channel effect. Conversely, graphene (a revolutionary new material possessing an atomic thickness) has been shown to exhibit a promising value for electrical conductivity. Graphene would thus appear to alleviate some of the drawbacks associated with silicon-based transistors. It is for this reason why such a material is considered one of the most prominent candidates to replace silicon within nano-scale transistors. The major crux here, is that graphene is intrinsically gapless, and yet, transistors require a band-gap pertaining to a well-defined ON/OFF logical state. Therefore, exactly as to how one would create this band-gap in graphene allotropes is an intensive area of growing research. Existing methods include nano-ribbons, bilayer and multi-layer structures, carbon nanotubes, as well as the usage of the graphene substrates. Graphene transistors can generally be classified according to two working principles. The first is that a single graphene layer, nanoribbon or carbon nanotube can act as a transistor channel, with current being transported along the horizontal axis. The second mechanism is regarded as tunneling, whether this be band-to-band on a single graphene layer, or vertically between adjacent graphene layers. The high-frequency graphene amplifier is another talking point in recent research, since it does not require a clear ON/OFF state, as with logical electronics. This paper reviews both the physical properties and manufacturing methodologies of graphene, as well as graphene-based electronic devices, transistors, and high-frequency amplifiers from past to present studies. Finally, we provide possible perspectives with regards to future developments.Comment: This is an updated version of our review article, due to be published in Contemporary Physics (Sept 2013). Included are updated references, along with a few minor corrections. (45 pages, 19 figures

    Electric Chick Brooding Studies

    Get PDF
    Perhaps one of the most valuable lessons to be learned from a study of chick brooding is that good results can often be obtained in more ways than one. In carrying on work with electric brooders at the Nebraska Agricultural Experiment Station, special attention has been given to such factors as insulation and to other details of design which effect economy of operation and ease of construction. Low cost rather than cheapness has been the ideal. The work has been cooperative between the Agricultural Engineering Department and the Poultry Husbandry Department of the University of Nebraska

    Electric Chick Brooding Studies

    Get PDF
    Perhaps one of the most valuable lessons to be learned from a study of chick brooding is that good results can often be obtained in more ways than one. In carrying on work with electric brooders at the Nebraska Agricultural Experiment Station, special attention has been given to such factors as insulation and to other details of design which effect economy of operation and ease of construction. Low cost rather than cheapness has been the ideal. The work has been cooperative between the Agricultural Engineering Department and the Poultry Husbandry Department of the University of Nebraska

    Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere

    Get PDF
    Lovelock and Whitfield suggested in 1982 that, as the luminosity of the Sun increases over its life cycle, biologically enhanced silicate weathering is able to reduce the concentration of atmospheric carbon dioxide (CO_2) so that the Earth's surface temperature is maintained within an inhabitable range. As this process continues, however, between 100 and 900 million years (Ma) from now the CO_2 concentration will reach levels too low for C_3 and C_4 photosynthesis, signaling the end of the solar-powered biosphere. Here, we show that atmospheric pressure is another factor that adjusts the global temperature by broadening infrared absorption lines of greenhouse gases. A simple model including the reduction of atmospheric pressure suggests that the life span of the biosphere can be extended at least 2.3 Ga into the future, more than doubling previous estimates. This has important implications for seeking extraterrestrial life in the Universe. Space observations in the infrared region could test the hypothesis that atmospheric pressure regulates the surface temperature on extrasolar planets

    Carbonization over PFA-protected dispersed platinum: An effective route to synthesize high performance mesoporous-carbon supported Pt electrocatalysts

    Get PDF
    An alternative and effective route of synthesizing mesoporous carbon supported Pt nanoparticles is introduced. In reverse order to the conventional synthetic route, carbonization occurs after dispersion of platinum. In this process, H2PtCl6 acts as a Pt source and also serves as a catalyst for the polymerization of furfuryl alcohol (FA). The polymerized FA around the H2PtCl6 nanoparticles functions as a protecting agent and prevents the growth of Pt nanoparticles in the later high temperature carbonization step. The resulting Pt nanoparticles are highly dispersed in the mesoporous carbon structure, CMK3, and give a much higher methanol oxidation current when compared with Pt/CMK3 electrocatalysts prepared via the conventional route. © The Royal Society of Chemistry 2011.postprin

    Hydrocarbon photochemistry and Lyman alpha albedo of Jupiter

    Get PDF
    A combined study of hydrocarbon and atomic hydrogen photochemistry is made to calculate self-consistently the Lɑ albedo of Jupiter. It is shown that the Lɑ emissions observed by Voyagers I and II can be explained by resonance scattering of sunlight. Precipitation-of energetic particles from the magnetosphere can provide the large required source of atomic hydrogen, although the contribution of direct particle excitation to the disk-averaged brightness is insignificant. The variability of the Lɑ brightness inferred from many observations in recent years is examined. The large difference in the brightness of the He 584 Å resonance line observed by Pioneer and Voyager is briefly discussed. Driving the photochemistry by solar ultraviolet radiation alone yields a maximum mixing ratio of C_2H_6 + C_2H_2 at 10^(-2) atm of about 4 x 10^(-6). The possibility of additional CH_4 dissociation from precipitation of magnetospheric particles is discussed. The photochemistry of C_2H_2 and C_2H_3 is sufficiently uncertain not to permit accurate calculations of their densities and the ratio C_2H_6/C_2H_2

    Cooling, Storage, and Transporation of Milk and Cream

    Get PDF
    The care given milk and milk products should be such that they will be relished by young and old alike. Greater use of milk can be encouraged by serving fresh milk cold. Cooling of milk also insures a fine product several hours after production. This is important not only for milk that is to be used, but for milk or cream that is to be sold
    corecore